
 

Abstract—The algorithm presented accurately finds the 

Fourier coefficients, or spectrum, of discretely sampled, short 

duration signals. It avoids the FFT’s leakage errors. The 

algorithm uses a classical search approach, namely, bracketing 

and searching for the frequency, magnitude, and phase of the 

Fourier modes that minimize signal power—an application of 

non-linear least squares. The robustness of the procedure is 

analyzed, showing that bracketing captures only the global 

minimum and the frequency interval of attraction increases with 

shorter sampling intervals. The algorithm’s operation count and 

cost are demonstrated. In noiseless test cases, the algorithm can 

routinely find signal modes to machine precision without leakage. 

It is validated and compared with the Burgess-Lanczos method. 

The algorithm is demonstrated by resolving a note from a string 

instrument and phonemes in human speech. The algorithm has 

superior accuracy for signals with many modes, and it is valuable 

for precisely finding the frequency spectrum during a short time 

interval within a non-stationary signal when the number of signal 

samples is limited.  

 
Index Terms—Least Squares Methods, Parameter Estimation, 

Signal Analysis, Speech Processing, Frequency Estimation, Phase 

Estimation 

 

Nomenclature 

 

Cf Fourier coefficient (mode magnitude) at frequency f   

f Frequency of a mode in the signal, Hz 

fs Uniform sampling frequency of signal, Hz 

i Unit imaginary number 

L Convergence metric, dB 

M Number of cancelling modes 

N Number of DFT samples in sampling interval, N = T fs 

 Number of DFTF samples at test frequency 

p Integer power 

P Signal sample value precision in bits 

r(t) Gaussian random noise signal 

s(t) Continuous function or signal (single channel) 

Sk Sample value k from discretely sampling signal, s(t),  

 Sample value k from residual signal, M modes removed 

SkJ Sample value k of polishing signal for mode J 

t Time, s, also tk=k/fs, 

T Integration time or sampling interval duration, T = N/fs, s 

 Integration time at test frequency for DFTF, s 

α Angular frequency, α =2 π f, radians/s 
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t Time step between samples, t =1/fs, s 

, , Perturbation parameters for frequency, magnitude 

 Perturbation parameter for phase 

 Function to be minimized 

f Phase angle of mode that ensures Cf  is real, radians 

 Floor function, x 

j Integer index of cancelling mode, from set of M, 

J Integer index of cancelling mode polishing focus  

k Integer index of discrete time, kt; also a general index 

  Integer index of FFT mode, Nff s /   

^ Accent indicates complex value, otherwise real 

I. INTRODUCTION 

inding the frequency and magnitude of a signal’s modes is 

a common problem in science and engineering. Currently, 

the Fast Fourier Transform (FFT) is a commonly used method. 

The FFT accurately represents the discrete signal and is very 

robust and efficient. Yet, in general, it does not provide 

precise spectrum information, including Fourier coefficients of 

the underlying signal modes. 

The FFT suffers from ‘leakage’—additional modes in the 

spectrum beyond the underlying signal itself. For long 

duration, stationary signals, a sufficient number of signal 

samples exist so that FFT results can be averaged to better 

resolve frequencies. However, non-stationary signals do not 

have the time duration and number of samples, N, to achieve 

frequency resolution with an FFT. 

The current paper demonstrates a robust algorithm for 

accurately finding an auditory signal’s Fourier coefficients and 

spectrum. Leakage errors are avoided, and the method can be 

used in a short interval when an auditory signal is nearly 

stationary and the number of signal samples is limited. The 

algorithm is compared with the Burgess-Lanczos method [1].  

The algorithm can be valuable beyond auditory signals, in 

particular, when the precise frequency, magnitude, or phase of 

signal modes is required.  

Section I sets the background and notation for non-

specialists. Section II outlines the algorithm. Section III is a 

perturbation analysis of bracketing. Section IV concerns 

important properties, and Section V provides examples. 

A. Background 

In an early example of spectrum analysis from the 1860’s, 

Helmholtz [2] used Helmholtz resonators of glass and later 

metal to detect individual tones in musical instruments, 

speech, and other vibrating objects. A Helmholtz resonator 
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uses sympathetic resonance to detect vibration frequencies. 

Helmholtz explained the fundamental tone and ‘harmonic 

upper partial tones’ by Fourier series. 

Fourier [3] used his namesake series to solve the differential 

equation for heat flow in objects. Fourier’s contribution was to 

recognize that a series of sine/cosine modes can represent 

almost all functions and signals. Further, these series form 

solutions to important differential equations, including the 

wave and heat equations. 

Importantly, the wave equation models the underlying 

physics of many sound sources, plus sound transmission. A 

string, drum, or beam’s vibration are classic examples; sound 

propagation is another. Linearity of the equation and constant 

coefficients allow superposition of modes. Hence, the 

solutions to the wave equation are a sum of sine/cosine modes, 

and Fourier series represent the vibrations of many sound 

sources and their propagation. Yet, for those cases (fricative, 

plosive phonemes) where the physics of the sound source does 

not result in a wave equation model, Fourier series can still 

represent the signal. 

Fourier series were first calculated manually, and a need has 

existed for accurate machines and computationally efficient 

algorithms that automate calculation. Michelson and Stratton 

[4] devised a mechanical harmonic analyzer and synthesizer 

that improved the accuracy of Lord Kelvin’s machine for 

analyzing tides [5]. 

In the earliest years of digital computers, when computers 

were at least three orders of magnitude slower than today, the 

Fast Fourier Transform (FFT) was devised to give the Fourier 

coefficients of a discretely sampled signal. While Cooley and 

Tukey [6] brought the FFT into wide use in software and 

hardware, others had independently developed and used 

similar techniques. Cooley [7] provides a history. Soon after 

Cooley and Tukey’s paper, FFT based spectrum analyzers 

replaced [8] frequency shifting a signal into a band-pass filter. 

Contemporary research includes improving discrete Fourier 

transform (DFT) performance using a reduced distribution of 

signal samples [9]. 

One problem in finding a signal’s spectrum is that DFTs 

usually introduce ‘leakage’—additional modes in the spectrum 

beyond the underlying signal modes. Fig. 1 shows a signal 

with three modes and its FFT. The mode at f = 172.2656 Hz 

corresponds to an FFT frequency, 4 fs/N, and is found by the 

FFT without leakage.  The mode magnitude is found exactly 

and the neighboring Fourier coefficients are at the background 

spectrum. The two other modes are not at FFT frequencies, 

and they show a local peak, but they also show leakage or 

non-zero Fourier coefficients across the spectrum. The current 

algorithm avoids the problem of leakage, since it can search at 

frequencies between the fixed FFT frequencies. 

 

 
Fig. 1.  Noiseless signal (upper) and its FFT (lower) consists of three modes f 

= 172.2656 Hz, 635 Hz, and 4000 Hz; Cf = 1.0, 0.05, 0.7; f = 0.3π, 0.2π, 0.5π.  

The mode at f = 172.2656 Hz corresponds to an FFT mode frequency and is 

found by the FFT without leakage. The two other modes, not at FFT mode 
frequencies, show leakage or non-zero Fourier coefficients spread across the 

spectrum (lower). Green line above is residual signal, M

kS ; blue histogram 

lines below are the Fourier modes found by the current algorithm. Throughout 

the paper, unless stated otherwise, signals are sampled at fs = 22.05 kHz, N = 

512, T = 23.22 ms, P=32 bit resolution; signals are assumed to be band limited 

and without aliasing. 
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Fig. 2.  Periodic extension of a function (upper) and after Hanning filtering 

(lower). The function is periodic, but not of period T. A discontinuity is 

created above, and the filter removes it by distorting the signal. A slope 
discontinuity can also be created in a periodic extension. 
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Leakage is not an error; the FFT does exactly what it should 

do. FFT modes are all periodic with period T; consequently 

the series must also be periodic with period T. However, if the 

sampled signal is not periodic with this period, a discontinuity 

is introduced (Fig 2). In particular, when the signal is 

periodically extended beyond the interval and has a 

discontinuity or slope discontinuity, the FFT places a 

discontinuity where intervals meet—a departure from the 

intended signal [1]. Data windowing functions reduce FFT 

leakage by reducing this discontinuity; the sample values are 

zeroed toward the interval ends, but the signal is distorted.  

A statistical estimation approach to reducing the influence 

of leakage and noise, thereby improving an FFT spectrum, is 

to find an average value: divide a stationary, long duration 

signal into sub-intervals, apply an FFT to each sub-interval, 

and average the magnitude squared Fourier coefficients,
2

ˆ
f

C , 

at each frequency; in this manner, the variance of signal’s 

power spectrum (periodogram) is reduced [10] [11]. This 

procedure is often attributed to Bartlett [12]. For example, 

Lewicki [13] averaged fifty 1024-point FFTs to resolve the 

vibration spectrum of a helicopter transmission. For short 

duration signals, insufficient data exists for this approach.  

The Burgess-Lanczos method [1] [14] takes a different 

approach to circumvent leakage. Instead of minimizing 

leakage, the method assumes an underlying mode exists and 

approximates it from adjacent FFT mode parameters. 

Other methods exist, beyond the FFT. Instead of a Fourier 

transform, non-linear least squares (NLLS) and a 

minimization search can be used to find signal parameters. 

Friedlander and Francos [15] present theoretical analyses of 

using NLLS to estimate signal parameters. Angeby [16] 

applies NLLS and the Gauss-Newton method to polynomial 

phase signals (PPS), and notes that searching on small, sliding 

intervals eases numerical problems. For signal parameter 

estimation in the presence of noise, NLLS is considered 

statistically efficient.  Further, it can be applied to non-

uniformly sampled signals. 

The all-poles method (maximum entropy method (MEM), 

autoregressive model (AR), linear predictive coding (LPC)) is 

another approach to finding spectral content. By using a 

rational function (1) with poles, sharp spectral features can 

occur at real frequencies and represent discrete modes in a 

signal. The method can produce remarkable results, but it is 

considered sensitive to the model’s order and captures noise. 

In speech recognition [17] [18], the MEM is a popular method 

of representing a short duration signal due to its speed and 

simplicity. 

                         . (1) 

Since the 1980’s, wavelets [19] have been used to represent 

functions as a series, with a transform to find the series—not 

unlike Fourier series. Wavelets are appropriate for non-

stationary and non-periodic signals, as well as functions with 

discontinuities and sharp peaks. A fast, recursive algorithm 

[20] exists for finding the discrete wavelet transform. 

In electrical hardware, the Phase-Locked Loop (PLL) finds 

a frequency in a signal. In demodulating an FM radio signal, 

the frequency is found by a PLL or the Foster-Seeley 

discriminator. 

The human cochlea is a spectrum analyzer for auditory 

signals; Helmholtz [2] recognized this. Von Békésy [21] 

demonstrated that sound frequencies resonate at different 

points along the cochlear partition since decreasing width 

changes its resonant frequency. Measurements indicate 

individual frequencies are not sharply resolved in the feline 

cochlea [22], although for some echo locating bats with long 

duration calls, resolution may be an order of magnitude 

sharper. 

B. Fourier Series, Coefficients, and Transform 

The Fourier series and transform are outlined here for 

completeness and clarity of notation. The Fourier series is a 

representation of a continuous function or signal, )(ˆ ts . The 

Fourier series is expressed in terms of Fourier coefficients, 

f
Ĉ , and modes, )2sin()2cos(

2
tfitfe

tfi


 

 , on [0,T] 

as, 

                                 






tfi

f eCts
2ˆ)(ˆ  . (2) 

Modes come in pairs, 
f . Here we focus on real signals, s(t), 

and the real part of the series, namely  

   



)2cos()(  tfCts f

,  
 ff CC ˆ2 ,  0f .(2b)  

A constant, real phase, 
 , is introduced to make magnitude, 

f
C , real  

By the Fourier Expansion Theorem [23], the series in (2) 

will converge to s(t) in an interval, if s(t) is piecewise 

continuous in the interval with a finite number of corners, that 

is, slope discontinuities. s(t) must also be periodic outside the 

interval (a sufficient condition, but not necessary). The 

coefficients 
f

Ĉ  are given by (3) in the interval [0, T]. 

The wave equation describes the vibration of stringed 

instruments and drums and is solved mathematically with a 

Fourier series. Consequently, a few harmonic modes describe 

the sound. Similarly, the vibrating human vocal folds generate 

harmonic modes. Many objects and machines have natural 

frequencies—due to their shape, restraint, and elastic 

properties—which define their resonance and vibration in 

terms of Fourier modes. 

In contrast, the fricative phonemes of human speech 

(voiceless ‘s’ and ‘f’) are created by turbulent airflow between 

the tongue and teeth; there are multiple flowpath locations 

where flow separation can occur. Turbulent airflow involves 

transient eddies of varying sizes that produce sounds at 

random frequencies within a frequency range. The 

mathematical analysis of this sound source does not yield 

Fourier series solutions, but with enough modes and the 

Fourier Expansion Theorem, sound representation is possible. 

Similarly, Fourier series represent the plosive phonemes of 

human speech (‘b’, ‘p’, ‘t’) and their abruptly starting air flow 
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and pressure wave. Section V gives examples. 

The Fourier Transform is a way of finding Fourier 

coefficients and the series. Under appropriate conditions, the 

Fourier coefficients, 
f

Ĉ , of a signal, s(t), are given by, 

                                    dttse
T

C

T

tfi

f )(
1ˆ

0

2

 



  (3) 

where T is an integration time that must be an integer number 

of periods at the frequency, f . Further, s(t) must be periodic 

in the interval [0,T] or zero outside of it—otherwise leakage 

can result. 

The FFT is a practical method of efficiently finding Fourier 

coefficients using a discrete approximation to the Fourier 

Transform (3). 
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where 
2

,0, N
f
k

k
s

t   , and N = 2
p
. 

The function, s(t), is uniformly sampled at a frequency, fs. 

The FFT frequencies, f , are fixed by the sampling frequency, 

fs, and the number of samples, N; in particular, f0=0, f1=fs/N, 

plus 1
2
N  harmonics. Importantly, this choice of f  (with N 

= 2
p
) ensures an integral number of periods of the FFT mode 

within the sampled data. 

Being constrained to these frequencies allows efficient 

calculation of coefficients for large N. The FFT is efficient 

because it takes only O(N log2 N) operations to calculate these 

Fourier coefficients at 1
2
N  frequencies. In particular, 

repeated evaluations of )(
2

k

ti
tse kN

sf occur for different 

frequencies, but the algorithm elegantly orders operations to 

eliminate these repetitions. Further, evaluation of the 

trigonometric functions in exp( 2 i l fs /N tk ) is simplified. 

C. FFT Leakage and the Burgess-Lanczos Method 

Yet another way to view leakage is to calculate the Fourier 

coefficients, C , of a single mode, tf2cos , where 

Nff s /  . Using (3), leakage in the continuous Fourier 

transform can be expressed in closed form as, 

                   ;2cos2cos
2

0

T

dttftf
T

C  (5) 
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For integral µ, the mode tf2cos  is periodic with period 

T, and
 C , that is, there is no leakage ( is the Kronecker 

delta). For real µ between  and 1 , that is,    , for a 

frequency perturbation , the mode is not periodic with period 

T. Non-zero Fourier coefficients occur across the spectrum. 

Fig. 3 graphs (5) for the modes in Fig. 1 and compares with 

FFT results. 

The Burgess-Lanczos method circumvents leakage by 

estimating a mode from adjacent FFT modes. It assumes the 

signal contains a single mode, tf2cos , and uses (5) to 

approximate the unknown mode’s frequency, magnitude, and 

phase. In particular, the adjacent Fourier (or FFT) coefficients 

Ĉ  and 
1

ˆ
C  are assumed to dominate ( 1   ), as the 

other coefficients quickly become small. From FFT results, 

the mode may be approximated [1] by, 
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where Ar is a normalization, typically 1/N, sometimes 1. 

Equations 6 are appropriate for 0 ≤  ≤ 0.5, but, for 0.5 <  < 

1, better estimates of Cµ and µ are: 
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. (7) 

Burgess [1] also indicated that Hanning filtering and larger 

sample sizes, N, would give improved estimates, and he 

provided equations and error estimates. This method is very 

efficient and significantly improves the accuracy of FFT mode 

estimates for low noise signals. Prediction accuracy is 

degraded by the leakage of nearby modes and by noise. Fig. 3 

suggests accuracy limitations, since the closed form and FFT 

results differ, as do FFTs of different lengths, N; further these 

differences are comparable in size to the small mode. 

II. ALGORITHM OUTLINE 

To accurately determine Fourier coefficients for a short 

duration signal, the current algorithm uses NLLS and a 

classical search strategy, namely bracketing and search, to 

minimize a function and find a mode. A third step, polishing, 

is also required. The function to be minimized, (Sk) (8), is 

the power of a reduced signal, namely, the signal, Sk, minus a 

cancelling mode. The search space includes frequency, ftest, 

magnitude, Ctest, and phase, test.  

         2
1

0

)2cos(
1

)( test
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k

testtestkk tkfCS
N
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 . (8)

 
Bracketing must exclude local minima from the search. 

 
Fig. 3.  Graphs of closed-form transform (5) and an FFT (N=512) for the 

three modes of the signal in Fig. 1, by superposition. 
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Powell’s method is the most efficient and robust search 

method tested. Once (Sk) is minimized, the cancelling mode 

is subtracted from the signal, Sk, to form a new residual signal,
M

kS , (9), and the bracketing and search is repeated with 

)( M

kS to find the next largest mode. These steps are shown in 

Table I. 

    



M

j

jjjk

M

k tkfCSS
1

)2(cos      k = 0, N-1 (9) 

Just as the Burgess-Lanczos estimate has errors due to 

interaction with other modes, the search result is not exactly 

the mode of the signal. In particular, the minimum of (Sk) is 

shifted away from the exact result by the presence of other 

modes in the signal, hence the frequency, magnitude, and 

phase found for the cancelling mode are well approximated, 

but not exact. To circumvent this problem, as many of these 

offending modes as possible are removed while leaving the 

mode to be refined. In particular, the polishing function SkJ  

(10) isolates mode J by subtracting all other approximated 

modes from the original signal leaving only the residual signal 

and the Jth mode to be polished. The search method is also 

applied to this isolated mode, (SkJ). 

                    )2cos( jj

Jj

jkkJ tkfCSS   


   

for k = 0, N-1,      j = 1, M,  jJ.                    (10) 

The algorithm continues until the signal is sufficiently well 

represented. The algorithm is implemented in single precision, 

P=32. Table II demonstrates results and compares with the 

Burgess-Lanczos method. 

III. ANALYSIS OF BRACKETING, SEARCH METHODS, AND 

POLISHING 

This section provides more detailed explanations and 

analysis of bracketing, search, and polishing. Two important 

properties must be guaranteed. First, ensure generally that 

bracketing includes only the region of attraction of a global 

minimum—no local minima. Second, ensure that polishing 

works generally, and the global minimum converges to the 

desired mode. For a first reading, scrutiny of all details may 

not be necessary. 

A. Analysis of Bracketing 

With an oscillatory signal and cancelling modes, many local 

minima are observed for . Bracketing must exclude local 

minima and find a starting point within the region of attraction 

of the global minimum. However, perturbation analysis shows 

that an FFT helps find the bracketing interval. 

1) Perturbation Analysis of the Global Minimum 

Perturbation analysis of the bracketing requirements 

considers a simplified model problem, namely, a single mode, 

cos(2πft), representing the discrete target signal, Sk = cos(2πk 

f/fs). Further, the analyses involve an approximate cancelling 

mode with a small error in frequency, magnitude, or phase. 

Table III shows these cancelling modes and error parameters. 

The minimization function is the substitution of the discrete 

target signal and cancelling mode into , (8). Note that the 

summation in  is approximated by the integral 
T

s dtf
0

. 

Fig. 4 and Fig. 5 show these perturbation expansions in 

frequency, magnitude, and phase neighborhoods of the global 

minimum. A spreadsheet calculation, with the signal and  (8) 

was used to validate the perturbation analysis, and it is also 

plotted in the figures. 

TABLE I 

OUTLINE OF ALGORITHM AND PERFORMANCE 

Form discrete signal, Sk = s(k/fs), k=0,N-1 
% CPU 

Time 

Operation 

Count 

For each cancelling mode j,  j = 1, M   

 {   

   FFT of signal, 1j

kS , for Initial Bracketing  2.1 
O(M N 

log2N) 

   For each test frequency, fl, , l = 1, Bf    

        { DFTF (fl) }  /* final bracketing */ 4.5 M Bf 10 N 

   Refinement search by Powell’s method )( 1 j

kS  28.5 O(M·10N) 

   Remove Approx Mode, Reduced Signal, j

kS   < 0.1 M 8N 

   /* Polishing */   

   For each mode found, mode J, J = 1, j  {   

     Form Polishing Signal, SkJ, for mode J <0.1 O(M2 N) 

     Refinement search by Powell’s Method )( kJS  64.8 O(M2 10N) 

    }   

 }   

% CPU Time is based on signal in Fig 1; N=512, M=3, Bf =21. 

TABLE II 

PERFORMANCE COMPARISON 

 f1 Cf1 f1/ f2 Cf2 f2/ f3 Cf3 f3/ 

Exact 172.2656 1.0 0.3 4000 0.7 0.5 635 0.05 0.2 

Current 172.2659 1.00000 0.30000 3999.9902 0.69999 0.500152 634.9979 0.05 0.20004 

BL 172.3051 0.99918 0.29909 4000.0117 0.70026 0.49910 635.2963 0.050151 0.19431 

BL Hanning  172.3492 0.99806 0.29807 3993.411 0.5468 0.6532 634.9552 0.049926 0.20153 

Performance comparison of the current search algorithm and the Burgess-Lanczos (BL) method with and without 

Hanning filtering on the noiseless, three-mode signal from Fig. 1. Burgess-Lanczos method modes successively 

removed, largest to smallest, to reduce interaction error; polishing was not advantageous. P = 32 bits. 
 

 



 As a guide to bracketing the search,  is quadratic in a 

neighborhood of the global minimum for errors in frequency, 

, magnitude,  , and phase, . Further, the region of attraction 

for phase and magnitude is independent of sampling interval 

parameters T and N (Fig. 5).  

The bracketing interval width for frequency depends on 

sampling interval period, T, and Fig. 4 shows two different 

periods, T=23.22 ms and T=11.61 ms.  In particular, replacing 

 in Table III with frequency error, f, the dominant quadratic 

term is (f)  f
2
T

2
. Hence for shorter periods, T,  has a 

wider parabola near the minimum, and the frequency interval 

of attraction is larger. 

This interval of attraction analysis is consistent with 

Angeby’s observation [16] and implementation where short 

sliding windows significantly improve numerical properties. 

2) Initial Bracketing by FFT Periodogram 

The discrete modes of an FFT are separated by frequency 

intervals of fs/N. The first bracketing step is to use an FFT 

periodogram to narrow the search. In particular, the largest 

FFT coefficient, |Cf|, is found, where f = k fs /N, and a 

conservative frequency bracketing interval is [(k-1)fs/N, 

(k+1)fs/N]—a reduction to 4/N of the FFT’s spectrum. A 

second bracketing step provides further reduction to a starting 

point well within the global minimum’s region of attraction. 

3) Final Bracketing by Individual Mode DFTF 

The Burgess-Lanczos method could be used for final 

bracketing, but it is used for validation instead. An alternate 

method is introduced here, designated DFTF. 

The FFT is constrained to find Fourier coefficients at 

frequencies separated by fs/N, and this separation is 

determined by the sampling frequency, fs, sample size, N, and 

the requirement for an integral number of periods of the mode. 

Yet, both testing between the FFT frequencies, ftest, and 

successful bracketing is possible by using less that the full 

data set Sk, k=0, N-1, (Fig. 6) and by using an approximation 

to the Fourier Transform integral (4). 

For a signal, s(t), where the FFT suggests a spectral 

maximum near 
N

f sk , consider a test mode at the frequency 
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 , where . (11) 

Since less than a test mode’s period is lost from each 

interval, [0, T], high frequencies, ftest, have much less sample 

loss than low frequencies. Complete loss occurs and  is zero 

for ftest < fs /N; a brute force method is used for bracketing at 

these low frequencies. 
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TABLE III 
PERTURBATION ANALYSIS OF REGION OF ATTRACTION 

 
Cancelling Mode 

Perturbation 

Parameter 
Validity 

Dominant Term in 

 Expansion 

Frequency cos(2πf(1+)t)  =f/f || < 1/(2πT) 2
( n

2
/6 ); (f)  f2T2 

Magnitude (1+ )cos(2πft)  exact ()  2
 (1/2) 

Phase cos(2πft+)  
|| < 0.5 rad, 

(30
o
) 

()  2
 (1/2) 

Perturbation analysis shows that the search for signal cos(2πft) has a quadratic global minimum for errors in frequency, , magnitude,  , and phase, .  Further, 
the bracketing interval for phase and magnitude is independent of parameters T and N. The bracketing interval for frequency depends on sampling interval period, 

T. n=2πfT, the number of mode periods in the sampling interval, times 2π. 

 
Fig. 4.  Value of  and the perturbation expansion in a frequency 
neighborhood, [(k-1)fs/N, (k+1)fs/N], for a single mode signal. The minimum 

is quadratic, and, importantly, the bracketing interval depends on the 
sampling period, T; upper, T=23.22 ms (N = 512), lower, T=11.61 ms (N= 

256). The mode is f = 172.2656 Hz, Cf = 1.0, f = 0.3π. Magnitude, , and 

phase, , errors are zero. 

  



 

The computational cost is estimated as 10N for each mode 

tested, and DFTF relative cost is shown in Table I. The DFTF 

shows leakage, but does not show minimum shifting. 

To bracket the global minimum of , the strategy is to 

evaluate the DFTF at test frequencies, ftest, in the interval [(k-

1)fs/N, (k+1)fs/N].  The DFTF gives magnitude, Cftest, and 

phase, f. Fig. 7 shows an example. The largest DFTF 

coefficient, |Cftest|, approximates the center of the interval of 

attraction, and is used as the starting point for 

multidimensional minimization.  

How close is close enough? Could the presence of other 

signal modes reduce the interval of attraction from the single 

mode estimates of Table III? Experimentally, no issues have 

been detected in a large number of signals after searching to a 

resolution of 0.1 fs /N. Theoretically, the multimode 

perturbation analysis of section C shows that other modes do 

not change the quadratic expansion term—only the 

minimum’s location is shifted. 

B. Multidimensional Minimization by Powell’s Method 

The search algorithm must efficiently and exactly perform 

multidimensional minimization on (Sk), that is, find the 

frequency, f, magnitude, Cf, and phase, f, of a mode that best 

cancels a mode in the signal, Sk. Other search algorithms have 

been used to verify the code, yet Powell’s method is robust, 

can provide quadratic convergence (the current 

implementation [11] does not include the necessary 

extensions), and requires only function evaluations—not 

derivative evaluations.  

C.  Perturbation Analysis of Polishing Requirements 

Perturbation analysis shows that while searching for a 

cancelling mode by minimizing (Sk), the minimum is shifted 

away from the correct cancelling mode by the presence of 

other modes in the signal. Hence the frequency, magnitude, 

and phase of the cancelling mode are well approximated by 

searching for the minimum of , but polishing is required for 

exact results.  

 
 

Fig. 5.  Value of  and the perturbation expansion in magnitude (upper) and 

phase (lower) neighborhoods for a single mode signal. Perturbation analysis 

indicates each global minimum is quadratic and, importantly, the interval of 
attraction width does not depend on sample size, N. 

  

 
Fig. 6.  Mode ftest=170 Hz for DFTF on an interval, N=512. Less than all data 

points are used to ensure an integral number of periods of the mode.  

  

 
Fig. 7.  Plot of DFTF coefficient, |Cftest|, in the interval [3 fs /N, 5 fs /N]. 
  



The extended perturbation analysis uses two modes, 

cos(2πft) + a cos(2πf2t), to represent the discrete target signal, 

Sk. The parameterization of the cancelling mode is as before. 

Unfortunately,  is not of the form A2
 near the minimum 

as for a single mode. Instead,  is of the form A2
 + B +C in 

a neighborhood of its minimum at  = -B/(2A) where A, B, and 

C are expressions that are constant in a neighborhood of the 

minimum. In particular, the presence of a second mode shifts 

the minimum of  away from  = 0 and the desired result. 

Similarly for   and  . 

These errors are small. Table IV and (12) show the error in 

the minimum when the signal and cancelling mode are 

substituted into . For the signal in Fig. 1 without polishing, 

the frequencies are correct to 0.16 Hz, the magnitudes to 

0.4%, and the phases to within 0.2 degrees.  
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To circumvent this problem, a discrete polishing signal, SkJ, 

(10) is formed where all approximated cancelling modes are 

removed—except for the focus of the polishing, the J
th

 

cancelling mode. By removing the best estimates of the other 

modes in SkJ, this interference is reduced. By repeated 

polishing, the coefficients, Cf, of the cancelling modes 

converge to the best representation of the discrete signal. 

IV. IMPORTANT ALGORITHM PROPERTIES 

Several algorithm properties are important and are 

compared in this section, namely, convergence, computational 

complexity, convergence metrics, tolerance of signal noise, 

and resolution of two modes with nearly identical frequencies. 

A. Convergence to the Signal 

Fig. 8 shows convergence versus computation time, that is, 

the reduction in error with additional Powell search iterations. 

The graph indicates linear convergence. Powell’s method can 

give quadratic convergence, but the implementation used here 

[11], does not include the necessary extensions. 

B. Computational Complexity 

The current algorithm must be computationally efficient for 

all plausible input. Table I gives the observed relative CPU 

time for the signal in Fig. 1, plus the operation count for each 

algorithm step. The Powell’s method searches and repeated 

evaluations of  are the most time consuming steps. The 

current algorithm is much more time consuming than a single 

FFT—50 to 100 times more in this example.  

However, comparisons can be difficult. When performing 

an FFT, the temptation exists to increase the FFT’s sample 

size, N, to increase the frequency resolution.  Further, an FFT 

may need to be averaged over many sub-intervals [13] which 

further increases the computational cost.  In contrast, the 

current algorithm is unencumbered by fixed FFT sampling 

frequencies and is accurate on a single interval; the temptation 

is to reduce sample size, N, and reduce computational cost. If 

TABLE IV 
MULTIPLE MODES REQUIRE POLISHING 

 Cancelling Mode Error Parameter Validity Error in Minimum 

Frequency cos(2πf(1+)t)  =f/f || < 1/(2πT) 3a/n2  E1 

Magnitude (1+) cos(2πft)  exact a  E2 

Phase cos(2πft+)  || < 0.5 rad, (30o) a/2  E3 

Perturbation analysis shows the search minimum is shifted away from the desired mode by other modes in the signal.  = 2πf,  = 2πf2. Equation (12) gives 
the terms E1, E2, and E3. n=2πfT, the number of mode periods in the sampling interval, times 2π, hence errors are small. 

 

 
 

Fig. 8.  Convergence of search versus computation time for the three mode 

signal of Fig. 1. Linear convergence is indicated. Relative time is the time to 
process a large number of identical signals. Beyond t=12, machine precision 

has been reached. 

  



the Burgess-Lanczos method can successfully find signal 

modes, its computational efficiency is exceptionally good. 

If noise or a fricative is present, if nearly identical 

frequencies are present, then the signal is not well captured by 

a few modes. Additional computations are required to find 

these additional modes. Termination conditions can help. 

C. Precision and Convergence Metrics 

The precision, P, of signal sample values, Sk, places limits 

on the smallest modes that should be searched for. In 

particular, audio formats often decode signal values to a 

precision P = 8 bits, and for a signal scaled so as not to exceed 

a magnitude of one, signal details smaller than 2
1-P

 are lost by 

rounding to the nearest bit. The search algorithm should not 

search for modes smaller than this precision threshold. 

Similarly, signal peak magnitudes exceeding 1.0 are rounded 

to one. These two limits define the dynamic range of a signal. 

Using this concept, two convergence metrics are readily 

calculated to terminate the mode search. A convergence 

metric, L1, compares the extreme value of the residual signal, 

, to the precision threshold. Values less than 10 dB are 

considered good. 
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A second metric, L2, compares the residual signal’s power 

to the precision threshold. 
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A third metric, L3, measures the reduction in signal power 

due to removing cancelling modes. 
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Note, signals that do not utilize the dynamic range of the 

precision will have poor L3 performance. Further note that for 

each metric, larger negative values indicate better 

performance. Table V shows metric values for each test case. 
For storage, audio formats may use signal compression to 

increase signal precision, P, and/or store in fewer bits. For 

example, current telephone signal compression codes 12 or 13 

bits into an 8-bit value, and current MP3 and Ogg Vorbis 

formats store in fewer than P=8 bits. CD quality sound is 

P=16 bits. 

D. Effect of Signal Noise on Bisection, Search, and Results 

Noise can introduce random errors into the predictions of 

mode frequency, magnitude, and phase. Further, noise places 

limits on the smallest modes that should be searched for. 

Fig. 9 shows the three-mode signal, from Fig. 1, with and 

without Gaussian random noise, r(t). In both cases, the three 

modes are found, however the predicted parameters have 

small errors. Further, these errors are random since mode 

searches in different sampling intervals will have different 

noise signals. Lastly, the noise is large enough—relative to the 

convergence criteria—that the algorithm adds cancelling 

modes in an effort to capture this noise. The convergence 

criteria must consider the noise level to avoid this undesirable 

effect. 

Fig. 10 shows the prediction errors at various noise levels 

for the current and Burgess-Lanczos methods. 

E. Resolution of Two Modes with Nearly Identical 

Frequencies 

Can the algorithm resolve modes with nearly the same 

frequency?  Any spectral resolution algorithm must deal with 

the fundamental problem that: two modes at nearly the same 

frequency on a short interval look like a single mode at the 

mean frequency, if O(2πf T) < 1.   

Consider two modes of frequency f+f and f-f, separated 

by a small frequency spacing,  = f/f, and a phase offset 2 

[0, 2π]. Then, for any metric/algorithm, the combined signal 

is: 

          sin(2πf(1+)t +) + sin(2πf(1-)t -) 

        2 sin(2πft) cos(2πft +) (16) 

    2 sin(2πft) [ cos() + sin()2πft + cos() 2(πft)
2
 +…]. 

 

For short duration signals, the sampling interval, [0,T], is 

small, and these two modes approach a single mode when 

O(2πf T) < 1. Note that this general analysis applies to any 

algorithm designed to resolve frequency components. Since T 
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TABLE V 

CONVERGENCE OF EXAMPLE SIGNALS 

Test Case 
Precision, 

P 

Current Method Burgess-Lanczos 

L1 

(dB) 

L2 

(dB) 

L3 

(dB) 

L1 

(dB) 

L2 

(dB) 

L3 

(dB) 

No Noise, 3 Mode Case,  Fig. 1 32 8.1 -5.0 -91.0 48.2 33.0 -53.9 

Noise, 3 Mode Case, Fig. 9 32 59.1 45.8 -40.2 74.7 57.9 -28.1 

Two Modes f=20Hz, Fig. 11 32 52.2 26.4 -60.5 Not Stable 

Two Modes f=50Hz, Fig. 12 32 22.2 0.9 -87.4 89.6 74.9 -13.4 

Guitar Open e, Fig. 13 8 0.0 -14 -25.3 9.6 -3.0 -14.4 

Voiced Phoneme ‘oo’, Fig. 14 8 -0.1 -11.9 -22.6 16.9 2.3 -3.2 

Fricative ‘s’, Fig.. 15 8 6.5 -5.2 -10.8 20.3 8.6 -2.5 

Plosive ‘p’, Fig. 16 8 19.9 2.7 -19.8 32.3 22.6 -1.1 

Plosive ‘b’, Fig. 17 8 20.7 2.1 -22.9 35.0 25.3 -0.3 

Convergence of residual signal, M

kS , in each test case for each metric.  Both the current method and the Burgess-Lanczos method are compared. Larger 

negative metric values indicate better performance. 

 



= N/fs, increasing the number of samples, N, or decreasing the 

sampling frequency, fs, will improve resolution.  

How does the current algorithm perform? Fig. 11 shows a 

three mode signal with two modes near 4500 Hz separated by 

20 Hz, and 2πf T=2.9. The two modes are not well resolved, and additional spurious modes are found. In contrast, Fig. 12 

shows the identical signal except the two modes near 4500 Hz 

are separated by 50 Hz, and 2πf T=7.3.  

V. PRACTICAL EXAMPLES 

Four auditory signals are presented in this section, and they 

range from a guitar note dominated by harmonics to voiced, 

fricative, and plosive phonemes from human speech. For each 

signal, results from the current algorithm are shown. 

A. Guitar Note 

The notes of string and woodwind instruments would be 

dominated by harmonics, like the guitar note in Fig. 13, due to 

the physics and mathematics of vibrating strings and air 

columns. Table VI shows modes found by the current method: 

fundamental frequency and eight harmonics plus two small, 

low frequency modes which are not harmonic. The residual 

signal, M

kS , is below the precision bounds of the signal. 

Additional harmonics exist that are small and do not 

significantly reduce L3. The Burgess-Lanczos method finds 

only the four largest modes, as shown in Table VI. The current 

method finds signal modes in this steady signal (Fig. 13) 

without spurious modes. 

B. Voiced Phoneme ‘oo’ 

A voiced phoneme ‘oo’ (vocal folds vibrating) from a male 

speaker is shown in Fig. 14. Table VII shows 5 harmonics of a 

fundamental frequency of 83.55 Hz, plus approximate 

 
Fig. 9.  Three mode signal (from Fig. 1) with Gaussian random noise (upper) 
and without (lower); SNR = 40 dB.  The three modes are found, but 

additional cancelling modes occur. Leakage is still present for modes not at 

FFT frequencies. 
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Fig. 10.  Effect of noise level on precision performance of search algorithm and 

the Burgess-Lanczos method on the three-mode signal from Fig. 1. 

 

 

 
 

Fig. 11.  Signal with two modes separated by f =20 Hz, and, lower, its FFT in 
red plus, the Fourier modes found, in blue. Signal (upper) consisting of three 

modes f = 4500 Hz, 4520 Hz, and 3000 Hz; Cf = 1.0, 0.9, 0.8. For 2πf T=2.9, 

the two adjacent modes are not accurately resolved and additional spurious 
modes appear. The Fourier modes are a good approximation to the signal; 

residual signal shown in green (upper). Signal sampled at P =32 bits, M = 20. 
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harmonics, found with the current method. The residual signal 

is below the precision bounds of the signal. The Burgess-

Lanczos method finds only a single mode, as shown in Table 

VII. 

The human vocal folds are a pair of semi-circular 

membranes restrained along their circular arcs; harmonics are 

known to occur. The shape of the human vocal tract is known 

to shift formant frequencies [24]; the approximate harmonics 

above 550 Hz in Table VII may be due to this effect.  Modes 

are separated by more than 50 Hz except for three small 

modes. 

C. Fricative Phoneme ‘S’ 

A fricative phoneme, ‘S’, from a male speaker is shown in 

Fig. 15. Signal frequencies are centered near 4500 Hz. The 

weak signal is near the precision bounds of the signal. The 

modes found are typically separated by 50 Hz or more; only 

one separation of ~30 Hz exists. Increasing the number of 

cancelling modes, M, from 20 to 30 reduces L1, L2, and L3 by 

only about 3 dB. 

D. Plosive Phoneme ‘P’ 

A plosive phoneme, ‘P’, from a male speaker is shown in 

Fig. 16. The stop (closed airway—no airflow or sound) is 

 
 

Fig. 12.  Signal with two modes separated by f =50 Hz, and, lower, its FFT in 

red plus, the Fourier modes found, in blue. Signal (upper) consisting of three 

modes f = 4500 Hz, 4550 Hz, and 3000 Hz; Cf = 1.0, 0.9, 0.8.  At 2πf T=7.3, 

for the two adjacent modes, frequency, f, magnitude, Cf, and phase, f, are 

found to about 1%; additional spurious modes are present, but they are small.  

Signal sampled at fs = 22.05 kHz, N = 512, T = 23.22 ms, P =32 bits, M = 20. 
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Fig. 13.  Open e note of untuned guitar with fundamental frequency of 331.05 
Hz and harmonics found using the current method. Upper graph is signal in red 

and residual signal, M

kS , in green; the black horizontal lines indicate signal 

precision bounds. Lower graph is signal FFT in red, and cancelling modes as 
blue histogram lines. L1=0.0 dB, L2=-14 dB, L3=-25.3 dB, P = 8. Properly tuned 

guitar open e is 329.63 Hz. 
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TABLE VI 

GUITAR OPEN E HARMONIC MODES 

Current Method Burgess-Lanczos 

Mode 

Freq 

(Hz) 

Harmonic Magnitude 
Relative 

Mag (%) 

Phase 

(π Rad) 

Mode Freq 

(Hz) 
Magnitude 

Phase 

(π Rad) 

46.00  0.0015 3.0 1.3814    

121.37  0.0032 6.4 1.6948    

331.05 1 0.0496 100. 1.4977 331.28 .0498 1.4916 

661.43 1.998 0.0178 35.9 0.5794 662.86 .0178 .5472 

992.10 2.997 0.0159 32.1 1.5536 992.02 .0157 1.5572 

1323.95 3.999 0.0024 5.0 0.3348    

1983.22 5.991 0.0119 24.0 1.8695 1982.47 .0118 1.8887 

2314.22 6.991 0.0067 13.5 1.9785    

2645.17 7.990 0.0023 4.6 1.0998    

3972.34 11.999 0.0019 3.8 1.7988    

4303.84 13.001 0.0023 4.6 1.3622    

Modes found by the two methods for the guitar open e note of Fig. 13. 



shown before 7605 ms. The strong pressure wave resulting 

from resumed airflow is clearly visible in the signal—and the 

frequency spectrum has large, low frequency modes. The 

fricative modes found near 2000 Hz are typically separated by 

about 50 Hz; three spacings are of ~30 Hz. 

All signals were recorded in Ogg Vorbis format [25] using 

Audacity [26] on a PC with a Gigaware desktop microphone. 

The human speech samples are of a male speaker. All searches 

are limited to twenty modes, M=20. Signals are sampled at fs = 

22.05 kHz (recorded at 44.1 kHz and desampled), N = 512, T 

= 23.22 ms, and P = 8 bit resolution. Signals are assumed to 

be bandlimited even though the Nyquist frequency is 11 kHz 

and the frequency limit of human auditory sensitivity is 20 

kHz.  

VI. CONCLUSION 

For the perception of tone in human speech and music, 

capturing the subtle variations in modal frequencies and 

magnitudes is important. The current method can accurately 

find the spectrum of these short duration signals. 

Each of the algorithms considered here are useful. The FFT 

continues to be a pillar of signal processing. If better accuracy 

is required in a low-noise signal with a few modes, the 

Burgess-Lanczos algorithm is efficient and appropriate. Yet, if 

 
Fig. 14.  Voiced phoneme ’oo’ signal (upper) in red and residual signal in 

green; the horizontal lines indicate signal precision. In lower graph, signal 
FFT in red, cancelling modes as blue histogram lines. L1=-0.1 dB, L2=-11.9 

dB, L3=-22.6 dB. 
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Fig. 15.  Fricative phoneme ’S’ signal (upper) in red and residual signal in 

green; the horizontal lines indicate signal precision. In lower graph, signal 
FFT in red, and cancelling modes as blue histogram lines. L1=6.5 dB, L2=-5.2 

dB, L3=-10.8 dB, M=20. 
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TABLE VII 

VOICED PHONEME ‘OO’ MODES 

Current Method Burgess-Lanczos 

Mode 

Freq 

(Hz) 

Harmonic Magnitude 
Relative 

Mag (%) 

Phase 

(π Rad) 

Mode 

Freq 

(Hz) 

Magnitude 
Phase 

(π Rad) 

83.55 1 .0114 33.3 0.3982    

168.38 2.015 .0106 31.0 0.7789    

253.88 3.038 .0040 1.2 0.8194    

339.30 4.061 .0069 20.1 0.7760    

418.73 5.012 .0094 27.5 0.8434    

508.28 6.084 .0342 100. 0.3580 525.82 .0360 1.9824 

551.64 6.602 .0022 6.4 0.1217    

599.09 7.170 .0062 18.1 1.4409    

680.28 8.142 .0173 50.6 1.8398    

715.84 8.568 .0030 8.8 1.5003    

762.13 9.122 .0123 36.0 1.9616    

847.26 10.141 .0175 51.2 1.5075    

2373.52  .0028  1.3395    

3057.92  .0026  1.8191    

Modes found by the two methods for the voiced phoneme ‘oo’ of Fig. 14. 



high accuracy Fourier coefficients are required in a short 

duration signal with many modes, the current algorithm would 

be more appropriate. 
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Fig. 16.  Plosive phoneme ‘P’ signal (upper) in red, residual signal in green; 

the two black horizontal lines are the signal precision bounds, P = 8 bit 
resolution. In lower graph, signal FFT in red, and cancelling modes as blue 

histogram lines.  L1=19.9 dB, L2=2.2 dB, L3=-19.8 dB.. 
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